東日本大震災における仙台海岸の植生変化パターンと津波外力の関係

東北大学	工学部	学生会員	○清水	陽花				
東北大学	災害科学国際研究所	正会員	内田	典子,	Suppasri	Anawat,	今村	文彦
東北大学	災害科学国際研究所	非会員	菅原	大助				

1. はじめに

東日本大震災の津波は浸水域の植生に甚大な影響を もたらした.震災後の植生変化の把握は,多様な主体に よって迅速に実施されてきたが,長期的な調査範囲は 限定的である¹⁾²⁾.また,植生遷移と浸水の関連性への 言及は散見されるものの³⁾,浸水深,流速,堆積などの 津波外力との定量的な関係は明らかでない.そこで本 研究では,広域のデータを用い,東日本大震災における 津波外力が,植生に関連した土地被覆に対してどのよ うに影響したか定量的に把握することを目的とする.

2. 研究手法

対象地域は宮城県の七北田川・名取川間の東日本大 震災津波時浸水域のうち,震災前時点の人為的利用地 (市街地や耕作地)を除く地域とした. 震災前と 2012 年度の植生図で短期的な植生変化を、震災前と2014年 度の植生図で復興工事が本格化する前の期間の内、長 期的な植生変化を観察した.植生データとして、「環境 省自然環境局生物多様性センター」の植生調査4により 作成された,震災前植生図と震災後植生図(2012年度, 2014 年度)を用いた. 津波外力として, 最大浸水深の 実測値⁵⁾のほか, Yamashita et al.⁶⁾の手法を基に算定され た最大浸水深,最大流速,津波による侵食・堆積での地 形変化量の4種類を用いた.植生図から解析を行うた めに、震災前と震災後各2年の植生に関する土地被覆 区分を、「植生なし」、「自然植生以外の植生あり」、「自 然植生あり」の3つのグループに分けた.ここで、自然 植生とは、沿岸域固有の植生と定義した. 各グループの 詳細を表1に示す. さらに, 植生の時系列変化を観察 するため、震災前と震災後各2年を比較して、表2の ように植生変化を9パターンに分割したうち、植生の

表1 土地被覆区分グループ

1.植生なし	 2.自然植生以外の 植生あり 	3.自然植生あり
開放水域	二次草原	自然林
自然裸地	外来種木本群落	植林
	空地雑草群落	二次林
	植林跡地	湿生草原
	非耕作農地	塩沼地
		砂丘植生

表2 植生変化パターン

植生なし→植生なし	(1_1)
→自然植生以外の植生あり	(1_2)
→自然植生あり	(1_3)
自然植生以外の植生あり→植生なし	(2_1)
→自然植生以外の植生あり	(2_2)
→自然植生あり	(2_3)
自然植生あり→植生なし	(3_1)
→自然植生以外の植生あり	(3_2)
→自然植生あり	(3_3)

2_3 , 3_3:植生の再生が確認される 2_1 , 3_1:植生の再生が確認されない

1_2,1_3: 震災前と比較し新たに自然植生が出現

再生が確認される2パターン("再生あり"),植生の 再生が確認されない2パターン("再生なし"),震災 前と比較し自然植生が出現した2パターン("自然出 現")に着目し,それぞれ外力との関係性を考察し た.

3. 結果・考察

表 2 の下部に示した植生変化パターン 6 種と外力 4 種の関係,また植生の短期的変化と長期的変化を箱ひ げ図に示した(図 1-図 4). 各図中の 2012 年における

キーワード:津波外力,土地被覆,浸水深,沿岸植生,植生遷移 住所:宮城県仙台市青葉区荒巻字青葉 468-1 E305 TEL: 022-752-2089

土木学会東北支部技術研究発表会(令和4年度)

1_2 のデータは存在しなかったため、2014 年のみ示した.

図1より、"自然出現"に該当する1_3における最大 浸水深の中央値は2012年では4.3mあるのに対し、2014 年では8.0mであった.これは、"再生なし" に属する 植生変化パターンのうち最も大きい中央値であった9.2 mに近しい値となっている.よって、浸水深の大きい地 点でも、長期的な観点では震災前に存在しなかった自 然植生の出現も可能であることがわかった.計算最大 浸水深においても、実測浸水深と同様に、浸水深の大き かった地点で自然植生の出現が確認された(図2).

図3に示す最大流速において、"再生なし"に属する 21及び31の2012年の各中央値(6.530-7.840)は、

"再生あり"に属するどの植生変化パターンの中央値 (4.690-5.450)よりも大きい.これより,最大流速が大 きいと植物の再生は難しい傾向にあるといえる.これ は,津波の流速は植生へ水平方向に働くので,流速が大 きいほど植物の根が残存不可能となるためだと推測さ れる.

図4に示す地形変化量において、"再生あり"、"自然 出現"のどの植生変化パターンの中央値(0.009-0.165) も正の値であり、これは津波による土砂の堆積を示す. 土砂の堆積により種子の漂着等がもたらされたと考え られる.反対に、"再生なし"に属する植生変化パター ンのうち、2014年の2_1の中央値(-0.519)と2012年

の3_1の中央値(-0.060)は負であり,他の二つの箱ひ げ図も負に多く分布している.これは津波による侵食 を示し,津波による侵食が植物の長時間の浸水や種子 の流出をもたらしたことが推測される.

4. 終わりに

本研究では、津波の外力に着目し、仙台海岸の植生変 化を箱ひげ図を用いて考察することで、津波外力と、植 物の再生や新たな自然植生の出現との関係性を明らか にした.津波後の植生変化の推定には、今後地理的要素 や津波外力以外の環境条件などの考慮が必要である.

参考文献

- 岡浩平,平吹喜彦: 2011 年大津波を受けた仙台湾南蒲生 の海浜植物の再生状況 (<特集>東日本大震災と砂浜海 岸エコトーン植生:津波による攪乱とその後の回復), 保全生態学研究, 19 (2), 189-199, 2014.
- 2) 富田 瑞樹ら:海岸林の津波撹乱跡地における生物的遺 産の分布と堆砂状況,自然環境復元研究,6(1),51-60, 2013.
- 菅野洋ら: 巨大津波直後の海岸林に生じた多様な立地の 植生の変化:3年間の記録,保全生態学研究,19(2),201-220,2014.
- 4) 生物多様性センター:調査報告情報,しおかぜ自然環境ロ グ <u>http://www.shiokaze.biodic.go.jp/datareport.html</u>, (最終閲覧日: 2023 年1月17日)
- 5) 東京大学空間情報科学研究センター: 復興支援調査アー カイブ, http://fukkou.csis.u-tokyo.ac.jp/, (最終閲覧日:2023 年1月17日)
- 6) Yamashita, K et al.: "Numerical Simulations of Large-Scale Sediment Transport Caused by the 2011 Tohoku Earthquake Tsunami in Hirota Bay, Southern Sanriku Coast", *Coastal Engineering Journal*, 58, No.4, 2016.