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INTRODUCTION 

 

This manual is based on “TSUNAMI NUMERICAL SIMULATION with the staggered leap-frog scheme 

(Numerical code of TUNAMI-N1)” of Dr. Fumihiko Imamura, Prof. of Tsunami Engineering School of Civil 

Engineering, Asian Inst. Tech. and Disaster Control Research Center, Tohoku University prepared in June, 

1995 for TIME project.  The TIME (Tsunami Inundation Modeling Exchange) started in 1991 as a joint 

effort  of IUGG and IOC/UNESCO during IDNDR. The Disaster Control Research Center (DCRC), Tohoku 

University, Japan has been acting as the center of TIME, to transfer numerical technique of tsunami 

simulation to the countries which suffered or will suffer tsunami hazards. Fifteen institutions of twelve 

countries obtained the computer programs and manuals developed and prepared by DCRC through mails 

or by training directly from DCRC.  Four institutions of four countries obtained the technique through Mr. 

Ortiz, one of the trainees of the TIME project.  As of 2003, the TUNAMI code was transferred to nineteen 

institutions of fifteen countries. 

 

In 1997, the manual was published by UNESCO as IOC Manuals and Guides No.30 “IUGG/IOC TIME 

PROJECT: NUMERICAL METHOD OF TSUNAMI SIMULATION WITH THE LEAP-FROG SCHEME”.  

The TUNAMI code consists of; 

TUNAMI-N1 (Tohoku University’s Numerical Analysis Model for Investigation of Near-field tsunamis, No.1) 

(linear theory with constant grids),  

TUNAMI-N2 (linear theory in deep sea, shallow-water theory in shallow sea and runup on land with 

constant grids),  

TUNAMI-N3 (linear theory with varying grids),  

TUNAMI-F1 (linear theory for propagation in the ocean in the spherical co-ordinates)  and 

TUNAMI-F2 (linear theory for propagation in the ocean and coastal waters).  

 

The mentioned manual is revised and extended by Dr. Fumihiko Imamuıra tohoku Univesity, Japan,  Dr. 

Ahmet Cevdet Yalciner and Research Assistant Civil Eng. Gulizar Ozyurt, Middle East Technical University, 

Turkey by including the manual for TUNAMI-N2, processing bathymetry file, input procedures and a 

glossary. 

 

Chapters 1 to 7 assess the governing equations, numerical scheme, errors, initial and boundary conditions. 

Chapters 8 to 10 assess the input files and data necessary for the software. Chapter 11 assesses the 

TUNAMI-N2 program in detail. Chapter 12 assesses the interpretation of the output files. Chapter 13 



includes some sample and real-time examples. The glossary is an important source for the whole document 

including earthquake, tsunami and wave terminology. 
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1. GOVERNING EQUATIONS 

  

1.1 Shallow Water Theory 

 

 Tsunamis which are mainly generated by the movement of sea bottom due to earthquakes 

belong to long waves. In the theory of such waves, the vertical acceleration of water particles are negligible 

compared to the gravitational acceleration except for an oceanic propagation of tsunami [Kajiura, 1963]. 

Consequently, the vertical motion of water particles has no effect on the pressure distribution. It is a good 

approximation that the pressure is hydrostatic.  

 Based upon these approximations and neglecting the vertical acceleration, the equations of 

mass conservation and momentum in the three dimensional problem (see Fig 1.1) are expressed by the 

following theory: 
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where x and y are horizontal axes, z the vertical axis, t time, h the still water depth, η the vertical 

displacement of water surface above the still water surface,  u, v and w are water  particle  velocities  in  

the  x, y and  z directions,  g  the gravitational acceleration, and  τij  the normal or tangential shear 

stress in the i direction on the j normal plane.  



 

 The equation of momentum in the z-direction with the dynamic condition at a surface that p = 0 

yields the hydrostatic pressure  ( )zgp != "# . 

 

 We can solve any wave propagation problems by using the governing equations - Eq.(1.1) with 

boundary conditions. The dynamic and kinetic conditions at surface and bottom are given as follows: 
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Now, let us integrate Eq. (1.1) from the bottom to the surface using by Liebnitz rule. For example, the first 

term of the momentum equation in the x-direction is rewritten as follows:  
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With dynamic and kinetic condition - Eqs. (1.2)-(1.4), we finally obtain the following two dimensional 

equations (this is called the shallow water theory) : 
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where D is the total water depth given  by  h+η,  τx  and  τy  the bottom frictions in the x- and y- 

directions, A the horizontal eddy viscosity which is assumed to be constant in space, the shear stress on a 

surface wave is neglected. M and N are the discharge fluxes in the x- and y- directions which are given by, 
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1.2 Bottom friction 

 

 The bottom friction is generally expressed as follows, in an analogy to the uniform flow, 
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where f is the friction coefficient. Without any detailed discussion of the value of f it is preferred to use 

Manning's roughness  n  which is familiar among civil engineers. Values of n are given in Table 1.1 [Chow, 

1960]. 

The friction coefficient  f  and Manning's roughness  n  are related by 
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This implies that  f  becomes rather large when the total depth D is small as n remains almost a constant.  

Thus, the bottom friction terms are expressed by  
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Throughout the present model, the expression of bottom friction in Eq.(1.9) is being used. n should be 

selected depending on the condition of the bottom surface according to the Table 1.1. 

 

Table 1.1 Values of Coefficient of Bottom Friction n (after Linsley and Franzini, 1979) 

 

Channel Material n Channel Material n 

Neat cement, smooth metal 0.010 Natural channels in good condition 0.025 

Rubble masonry 0.017 Natural channels with stones and weeds 0.035 

Smooth earth 0.018 Very poor natural channels 0.060 

 

 

1.3 Governing equation 

 

 For the propagation of tsunami in the shallow water, the horizontal eddy turbulence could be 

negligible compared to the bottom friction except for run-up on the land. The following equations are 

therefore given as the fundamental equations in the present model. 
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1.4 Note on convection terms 

 

 The other expression of the shallow water equation using the averaged velocities in x- and y- 

directions ( u and v) are often introduced by 
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 We should remind that the above equation can not be applied to a numerical model on run-up 

because it does not satisfy the conservation of momentum. For example, the convection terms in the 

momentum equation in the x-direction in Eq. (1.10) divided by D can be modified as 
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The convection terms in Eq.(1.10) are not the same as those in Eq.(1.11) and even if the mass 

conservation equation in Eq.(1.10), is applied, the third term in left side of Eq.(1.12) can not be eliminated. 

Note that in the case of tidal current with longer wave period than tsunami in which acceleration term, the 

third term in left side of Eq.(1.12) is neglected. 

 

2. NUMERICAL SCHEME 

 

2.1 Numerical scheme for linearized equation 

 

 For the first step to describe the numerical scheme for the tsunami model, the linearized long 

wave equation without bottom frictions in one dimensional propagation, Eq.(2.1), is introduced. 
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 Let us introduce the finite difference method to solve the above equation numerically. The finite 



difference method based upon the Taylor expansion series is shown as follows. 
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where Δt is the grid interval. We can form the "forward " difference by rearranging Eq.(2.2)  
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where the first term in the right side of Eq.(2.3) is obviously the finite difference representation for the first 

order of time derivative at  t=t (see Fig.2.1).  

 

Figure 2.1 Central finite difference representations 

 

The truncation error which have the order of Δt, (O(Δt)) is the difference between the partial derivative and 

its finite difference representation. Moreover we can rearrange the Taylor expansion series in Eq.(2.2) by 

replacing Δt  by  +Δt /2  and  -Δt/2  and then we obtain "central" difference with the second order of 

truncation error. 
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 It is interesting that although the expression of the finite difference representations in Eqs. (2.3) 



and (2.4) are similar, the order of truncation errors are different. By using the above "central" difference 

method with the staggered numerical points for water level and discharges, which is called the staggered 

leap-frog scheme, we can descretize Eq.(2.1) as follows. 
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For dealing with discrete values in numerical computations, η(x,t) and M(x,t) are expressed for the case of 

the staggered leap-frog scheme as  

 

( ) ( ) n

i
tnxitx !!! =""= ,,   

( ) ( ) ( ){ } 2
1

2
12

1,
2
1,

+

+
=!+!+=

n

i
MtnxiMtxM      (2.6) 

 

where Δx and Δt are the grid sizes in x direction and in time t. The point schematics for the numerical 

scheme are illustrated in Fig.2.2. The points for water depth h is the same as those for water elevation, η. 

 

i

n

i

n

i
hD +=!  

 

Figure 2.2 The point schematics for the numerical scheme 

 

The above finite method provide stable result as long as the C.F.L condition is satisfied: 



 

C (celerity) <  Δx /Δt  

 

 Details of the stable condition will be discussed in the Chapter 3.1. Imamura & Goto (1988) 

investigated the truncation errors in three kinds of typical scheme for long waves simulations and showed 

that in term of numerical accuracy the staggered leap-frog scheme is the best among them. 

 

2.2 Numerical scheme for convection terms 

 

 In the present numerical scheme, an "upwind" difference scheme is applied to the convection 

terms in order to make the computation stable. The reason why this scheme ensures the stability of 

computation is explained by taking a simple convection equation in the following: 
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Here the coefficient C is the propagation velocity and is assumed constant. The arrangement of 

computation points in the present scheme requires the forward difference scheme for the first order time 

derivations. This yields 
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 In addition, the central difference is applied to the space derivative. 
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As a result, 1+n

i
F  is given by 
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 The solution of Eq.(2.10) is implicitly equivalent the solution of Eq.(2.11) with an truncation error 

of (Δt2+Δx2).  Substituting Eqs.(2.8) and (2.9) into Eq.(2.7) yields 
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If the second-order derivative with respect to time is rewritten by using the following relationship 

(this assumption is valid for the progressive waves), 
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 The solution of Eq.(2.11) is the same as the solution of the following diffusion equation in which 

the diffusion coefficient is negative. 
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 A negative diffusion works to amplify round-off errors with time leading to  an instability. 

Therefore, Eq.(2.10) is an unstable difference scheme. The more detail about stable and unstable scheme 

will be discussed in chapter 3.1. 

 

  In order to obtain a stable scheme, the space derivative term is approximated by either 

forward or backward difference depending on the sign of coefficient C. With the forward difference, we have 
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and with the backward difference 
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 The corresponding differential equations we are going to solve are within the truncation error of 



O(Δt2+ Δx2), for the forward difference 

 

 ( )
2

2

2 x

F
xtC

C

x

F
C

t

F

!

!
"+"#=

!

!
+

!

!
    (2.13) 

 

and for the backward difference 
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 Therefore, to keep the virtual diffusion coefficient positive (or say to ensure the stability of the 

computation), we have used the backward difference in case of positive C, and the forward difference in 

case of negative C, in addition to setting C
t

x
>

!

!
. In other words, the difference should be taken in the 

direction of the flow.  This is the reason why this scheme is called the "upwind" difference.  Although the 

leap-frog scheme has the truncation error of the order of Δx2, as long as  the  convection  term  

concerns, its order become large as Δx. 

       

2.3 Numerical scheme for bottom friction term 

  

 The friction term becomes a source of instability if it is discretized with an explicit scheme. To 

make the discussion of instability simple, let us consider the following momentum equation without 

convection terms: 
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The explicit form of Eq.(2.15) is : 
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 When a velocity become large or a total depth is small in a very shallow water, the absolute of 



coefficient (amplification factor) of the first term on the right hand side of Eq.(2.16) become more than unity, 

which leads to numerical instability. In order to overcome this problem, an implicit scheme to set a friction 

term can be basically introduced. For example, a simple implicit form,  
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ensures numerical stability, because the amplification factor in Eq.(2.17) is always less than unity. However 

the effect of friction in shallow water becomes so large that numerical results are dumped. Another implicit 

form, a combined implicit one to the friction term is given by, 
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This scheme also gives a stable result. It is, however, noted that the above scheme causes a numerical 

oscillation at the wave front because the amplification factor could be negative.  

 

 We should select the best scheme among some implicit ones to apply the bottom friction term 

with Manning's roughness. Considering the fact that the numerical scheme of convection terms also involve 

artificial or numerical dissipation, selection of Eq.(2.17) causes much damping in the result. Therefore the 

present model uses the combined implicit scheme, Eq.(2.18). 

 

3. STABILITY AND CONSISTENCY 

 

3.1 Stability 

 

 Tsunami propagation is one of marching problems that water level and discharges are varied 

with time. In our experiences in numerical simulations, a numerical result is un-expectedly diverged 

depending on grid size and time step, which is caused by instability in numerical simulations. In order to 



avoid such instability, a concept of stability and its condition is discussed in this chapter. A stable numerical 

scheme is one for which errors from any sources (round-off, truncation and so on) are not permitted to grow 

in the sequence of numerical procedures as the calculation proceeds from one marching step to the next. 

 

 Fourier or von Nuemann analysis is applied to obtain the stability condition for the given 

numerical scheme. Let ε represent the error in the numerical solution due to round-off errors. The numerical 

solution actually calculated may be written as, 
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where D is the exact solution of finite difference equation. The computed numerical solution F must satisfy 

the differential equation. For example, substituting Eq.(3.1) into Eq.(2.10) yields : 
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Since the exact solution D must satisfy the difference equation, the same is true for, 
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In this case, the exact solution D and the error must both satisfy the same differential equation. This means 

that the numerical error and the exact numerical solution both possess the same growth property in time. 

 

The error can be expressed in a Fourier series as follows: 
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where k is real but a may be complex. If Eq.(3.4) is substituted into Eq.(3.3), we get, 
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where r = CΔt/Δx. Dividing by xikat mee , above expression becomes 
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where β = kmΔx. The coefficient of eaΔt represents the amplification factor. It is clear that if a t
e

! is less 

than or equal to one, the error will not grow from one time step to the next, which is the stability condition. 

This method is called von Nuemann analysis.  However, this method is not always satisfied with the 

stability condition, as a result this numerical scheme lead to instable results. In the same way using the 

Fourier series for the error, the stability condition can be discussed as long as numerical scheme is linear. It 

is noted that von Nuemann analysis can not be directly applied to nonlinear equations. For instance, 

Eq.(2.10) is replaced by the following equation : 
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Substituting Eq.(31) yields : 
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The above equation indicates that the error no longer satisfy the original differential equation, Eq.(3.7), and 

the error depends on the value Dn in the previous time step. An initial value for a numerical simulation 

affects the stability condition. 

 

3.2 Consistency 

 

Consistency deals with the extent to which the finite difference equations approximate the partial differential 

equations (PDE). The difference between the PDE and the finite difference approximation has already been 

defined as the truncation error of the difference representation as shown in Eq.(2.3). A finite-difference 

representation of a PDE is said to be consistent if we can show that the truncation error vanishes as the 

mesh is refined. This should always be the case if the order of the truncation error vanishes under grid 

refinement [ie., O(Δt), O(Δx)]. An example of a questionable scheme would be one for which the truncation 



error was O(Δt/Δx) where the scheme would not formally be consistent unless the mesh were refined in a 

manner such that  Δt/Δx approach to 0. 

 

On the other hand, it is our experience that, even when the computations are stably carried out, the 

computed results often behave against what is expected from the PDE used. These errors are introduced 

by the numerical scheme and the result in the damping of wave height or numerical oscillations behind the 

main wave. For the analysis of truncation error to know the accuracy obtained by a numerical scheme, the 

von Nuemann analysis already introduced in the stability condition can be applied. Because the finite 

difference equations to obtain the exact solution is the same as those for numerical errors, which has been 

shown in Eq.(3.3). In the case of stability problem, only absolute value of amplification factor of the error 

expressed by Fourier series is concerned. However, for the analysis of the truncation error, a phase angle 

Φ, as well as amplitude, which are defined by 
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should be discussed. For example, the staggered leap-frog scheme has 
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 should be discussed. 

 

4. INITIAL CONDITIONS 

 

4.1 Initial Conditions 

 

The present program is only for tsunamis. No wind waves and tides are included.  The still water level is 

given by tides and is assumed constant during tsunamis are computed.  Accordingly, no motion is 

assumed up to the time n-1.  It means, therefore, in sea, 

 

0,, 2
1

2
1,

2
1

,
2
1

1

,
=

!

+

!

+

! n

ji

n

ji

n

ji NM"         (4.1) 

 

For run-up computation on land, the initial water level η is equal to the ground height h. 
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It should be kept in mind that values of h take negative sign on land. 

 

4.2 Static Source  

 

4.2.1. Bottom Deformation due to the fault motion 

The fault break parameters are  

i) The location of the fault coordinates as starting and ending points consequently (length of the fault) 

ii) The width of the fault 

iii) The direction of the fault axis from North (Clockwise) 

iv) The dip angle 

v) The slip angle 

vi) Vertical displacement of the fault 

vii) Focal depth 

 

Figure 4.1 Fault break parameters 

These parameters are inputted to the software FAULTWAVE.F for determination of the static tsunami 

source (initial wave) in the domain. This procedure is described separately under the subject of 

FAULTWAVE.F 

θ 

δ λ 



 

4.2.2. Sea Bottom Subsidence 

 

Sea bottom subsidence may be observed along the strike slip faults at some locations where the step over 

occurs. This is called pull apart mechanism. 

 

 

 

 

 

 

 

 

 

Figure 4.2 Subsidence at the tensile stress area 

 

4.2.3. Dynamic Input of Wave Source 

 

As for research purposes or understanding the basin response such as in special wave conditions or 

determination of resonance characteristics, the dynamic input can also be inputted in the basin. It is 

specifically controlled by Subroutine BNC1. The subroutine BNC1 must be modified according to the 

specified wave conditions. Help from Dr. Yalciner may be necessary.  

 

5. OPEN BOUNDARY CONDITIONS  

 

5.1 Open Boundary Conditions for Regular Waves and Forced Input 

 

A method of input at an offshore boundary is given in the following when a pure sinusoidal wave train is 

propagating. Actual motion of the water on the offshore boundary is different from a pure sinusoidal one but 

is given as a resultant of the motion caused by the advancing purely sinusoidal wave train and receding 

waves. If it is assumed that the motion is sinusoidal at the boundary, this inevitably introduces a forced 

oscillation and no reflected wave can pass the boundary. It is, however, necessary to allow the reflected 

wave freely pass the boundary. This is easily solved if the method of characteristics is used at the 



boundary. 

 

First, consider a one-dimensional case.  The equations for linear long waves in a channel of constant 

depth are, 
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Eq. (5.1) is reduced to 
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and Eq. (5.2) is reduced to 
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Addition and subtraction of the two equations yield 
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The mathematical meaning of Eq. (5.4) is stated as that on characteristics certain values are kept constant. 

That is, 
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   Assume a sinusoidal wave train advancing in the negative x-direction having its front at x=x0 at t=0, as 

shown in Fig.5.1.  Equation (5.6) gives, 
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along a positive characteristics and  
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along a negative characteristics.  

 

Figure 5.1 An offshore open boundary and characteristics when a simple harmonic wave train is 

propagating in the negative x direction. 

 

The wave train is propagating in the negative x-direction, and satisfies the following relationship between 

the horizontal water particle velocity u0 and the elevation of water surface η0. 
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With this relationship substituted, Eq.(5.9) is reduced to 
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and from Eqs.(5.9) and (5.10), we have 
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If we assume the wave form of the incident wave train η0 is given by 
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where k0 is the wave number, then the corresponding water particle velocity is expressed by 
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Consequently, the value of u at the boundary is composed of two parts as follows, 
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where the first term on the right-hand side is the given incident sinusoidal wave train and the second term is 

the receding wave. 

 

If Eq.(5.13) is expressed in the present difference scheme, we have 
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where M1 and η1 are calculated by  
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Second, we consider a two-dimensional case in which the relationship of characteristics is given on 

characteristic surface. Extension of the one-dimensional case mentioned above is used here. Different from 

a one dimensional problem, the direction of wave propagation should be determined carefully. In general, 

the propagation direction of the incident waves is given and constant and therefore negative characteristics 

have a constant direction. On the other hand the direction of positive characteristics corresponding to the 

reflected waves may be different from that of the incident waves. The direction of positive characteristics is 

determined as the direction of the resultant of M(I, j, k-1/2) and N(I, j, k-1/2). In this way, negative and 

positive characteristics should be computed with the same method as in the one-dimensional problem on 

taking their propagation direction into consideration. 

 

5.2 Open Boundary Conditions for Forced Input 

 

When the boundary condition itself is already composed of progressive and reflected waves, it is given with 

no modification on the boundary. There is no need to follow the method developed in the precedent 

subsection. No consideration is required to make the reflected wave freely pass the boundary. In case of 

linear problem, either displacement of water surface or discharge flux is used as the input at the boundary. 

 

5.3 Open Boundary Conditions for Free Transmission 

   

A method is given to make waves in the computation region go outward by freely passing the open 

boundary. The characteristics relationship in (2) above is used.  At the boundary x = x0, the relationships 

are  
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   In case of two-dimensional case, the direction of discharge should be taken into consideration. Assume 

that an incident wave propagates toward the negative x-direction.  The direction of characteristics 



corresponding to the wave is given and is constant with respect to both time and space. On the other hand, 

characteristics corresponding to waves reflected from land boundary may change their direction with 

respect to time and place. The direction of characteristics of reflected waves is determined as the direction 

of the resultant of M and N. With the directions of incident and reflected waves taken into consideration, the 

same method as in case of one-dimensional cases is applied. 

 

6. BOUNDARY CONDITIONS AT RUN-UP FRONT 

 

6.1 Wave front condition  

 

Run-up is taken into consideration only in nonlinear computations but not in linear computations. Whether a 

cell is dry or submerged is judged as follows. 

 

     D =h +η > 0, then the cell is submerged and 

              ≤ 0, then the cell is dry. 

 

The wave front is located between the dry and submerged cells. Discharge across the boundary between 

the two cells is carried out if the ground height in the dry cell is lower than the water level in the submerged 

cell. In other cases, discharge is considered zero. 

 

6.2 Boundary Conditions When Water Overflows Structures 

 

   The Hom-ma formula is used when water overflows breakwaters and sea walls in the computation 

region. Discharge overflowing the structures is given by  
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where h1 and h2 are the water depths in front of and behind structures measured above the top of structures, 

µ=0.35 and µ'=2.6µ. 

 

A tsunami front runs up and down the land. It is not easy to express this moving boundary with the 



coordinate system in the Eulerian description. If equations in the Lagrangian description are used, the 

moving condition can be expressed with no approximation (Shuto & Goto, 1978). Even with equation in the 

Eulerian description, a variable transformation in which the origin of the new coordinates is located at the 

front can easily express the moving boundary (Takeda, 1984). It is unfortunate, however, that these two 

methods are well applicable only to one dimensional problem, but poorly to any two-dimensional practical 

problem with complicated topography. 

 

There are several approximate moving boundary conditions. In the leap-frog scheme, grid points are 

alternatively located for velocity and water level assuming that the water level is already computed as a 

computational cell. If the water level is higher than the latter, the water may flow into the landward cell. 

Figure 6.1 explains the way to estimate the inflow velocity or discharge. 

            

 

Iwasaki and Mano (1979) assume that the line connecting the water level and the bottom height gives the 

surface slope to the first-order approximation. Hibberd and Peregrine (1979) give a provisional water level 

Figure 6.1 Various moving boundary conditions at a wave front 



in the dry cell on a linearly extrapolated water surface. Then, the discharge calculated with this provisional 

water level gives the total amount of water into the dry cell and the water depth in the cell. If necessary, the 

computation will be repeated with the water level thus modified. Aida (1977) and Houston and Butler (1979) 

evaluate the discharge into the dry cell with broad-crested weir formulas in which the water depth above the 

bottom of the dry cell is substituted. The coefficient of the discharge to gh  should be determined by a 

flow condition such as the Froude number 
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These approximations are convenient to handle but introduce numerical errors (Goto and Shuto, 1983a). 

The run-up height computed with the Iwasaki-Mano method agrees with the theoretical solution with a 5% 

range of error if the following condition is satisfied 
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With the Aida method, the condition is given by 
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in which is the α angle of slope, g is the gravitational acceleration, Δx is the spatial grid length, and T is the 

wave period.  

 

There are three methods to include the effects of buildings into tsunami simulation. The simple method in a 

hind casting is to allot a large friction coefficient f, which ranges from 0.2 to 1, to the residential areas. This 

method is however, not applicable to a forecasting, because an appropriate value of the friction coefficient 

is determined only after comparisons of the computed inundated area with the recorded.  

 

The second method which can be used in a forecasting is to determine an equivalent friction coefficient by 

summing up the drag of individual building. This is allowed to use the different values of the friction 

coefficient depending on a surface condition, for example, Cf=5x10-3 for coastal water and 1x10-2 on land 

without obstacles. 

 



The third and the best one is to use very fine grids in the city area. If grids are less than 5 m wide, most of 

the large building can be expressed as impermeable boundaries. This inevitably increases the number of 

grid points. Fine grids also introduce the question of whether or not a map used in discretization is accurate 

enough for this detailed computation. 

 

In the neighborhood of a large obstacle covered by fine grids, the water flow can be numerically simulated. 

However, this leaves the question of whether the computed result is reliable. Uda et al.(1988a) computed a 

tsunami that overflowed a model sand dune. They compared the results with measured data in hydraulic 

experiment. Agreement was poor just behind the dune where the water flow varied from supercritical to 

sub-critical flows through a jump. The, agreement recovered further behind the dune. 

 

7. CONTINUATION OF REGIONS 

 

• Continuation of Spatial Regions 

• Continuation of Time Regions 

 

7.1 Necessity of Continuation of Regions in Numerical Computation 

 

In the design of numerical computations for long waves such as storm surges and tsunamis, the open sea 

boundary had better be set in the deep ocean where the boundary conditions can be accurately and easily 

given. On the other hand, for economy of CPU time, (1) linear or nonlinear theories are used according to 

the degree of nonlinearity of the phenomena, and (2) coarse grids are used in the deep sea and fine grids 

are in the nearshore zone. This requires the continuation of computation at the boundary of regions of 

different grid length. 

The equations belong to the wave equation, for which the CFL condition should be satisfied for stability of 

numerical computation. 
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where Δt and Δx are the temporal and spatial grid lengths, and hmax is the maximum still water depth in a 

computation region. Approaching the shore, hmax becomes smaller, then a smaller x is selected to satisfy 

the CFL condition on keeping Δt constant. This is an ordinary way of how to select the temporal and spatial 



grids, if run-up is not included in simulations.  If run-up is included, it is sometimes very hard to satisfy the 

CFL condition by changing only the spatial grid length.  In this case, not only Δx but also Δt are changed in 

the different computation regions. 

 

   Continuation methods of water level and discharge between regions of different temporal and spatial 

grid lengths are given in the following, in order to carry out the computation continuously and smoothly.   

Eq. (7.1) must certainly be satisfied when selection of Δx and Δt for stability. 

 

7.2 Continuation of Regions of Different Δx 

 

In a problem which is two-dimensional in space, three independent variables, x, y and t, should be taken 

into consideration. In the following, it is assumed that t is constant in any region of different spatial grid 

length. In section (a), a method of continuation is explained by using one-dimensional propagation. In 

section (b), a method of continuation is given for the spatially two-dimensional problem. 

 

(a) Continuation of Region in the x - t plane 

 

Figure 7.1 shows the process of computation in the x - t plane in case of a one-dimensional propagation. 

Arrows given by solid lines are for the computation of the discharge, and that by broken lines is for the 

computation of the water levels. Numerals without and with prime ' on the t-axis corresponds to the time 

step when the discharge or the water level is computed. The discharge corresponding to a computation cell 

denotes the discharge through the positive x - side of the cell. 

 



 

 

Figure 7.1 Computation procedure in the x-t plane, (A) if the spatial grid length is constant in the whole 

region, (B) if two regions of different grid length are connected at the boundary b-b’. 

  

Figure 7.1(A) is the mesh when Δx is constant in the whole region of computation. In order to begin the 

computation, values at points of double circles on boundaries should be known; they are, the water level Z 

at t = 0' and the discharge M at t = 0 as the initial condition, the discharge or water level along x = 0 and x = 

nΔx as the boundary condition. If they are given, the water level Z1 at t = 1' is calculated with the equation of 

continuity, then the discharge M1 at t = 1 is obtained with the equation of motion. The same procedure is 

repeated to determine Z and M in the direction of time.  

 

Fig.7.1 (B) is a case of continuation of regions of different grid length. In the region S to the left of the line 

b-b', the spatial grid length is Δx, and in the right region L the spatial grid length is larger and is kΔx (k > 1).  

The computation procedure in each region is the same as in the former case.  However, if values on the 

line b-b' are not calculated, the region where the solution is given becomes narrower with the lapse of time 

7.1 - (A) 

7.1 - (B) 



as shown in Fig.7.1 (B). 

 

In order to obtain the solution in the whole x - t plane, discharge should be known on the boundary b-b’ at 

first.  This value of discharge can be calculated either in the region S or in the region L.  Assume now that 

the discharge is calculated in the computation for the region L.  In order to calculate the discharge at t = 1 

on the line b-b', we need the value of the water level ZL1' at a point in the region S, the position of which is 

symmetric to the point for ZL1 with respect to the line b-b'.  An interpolation may be used to determine ZL1’ 

from values obtained in the region S.  However, in place of interpolation, the present authors recommend 

to set k be an odd number. 

   

 In the authors' program, the following assumptions are being taken. 

 

(i) The ratio k is 3. 

(ii) For continuation, the region L needs an extra mesh in the region S  

  beyond the line b-b'. 

(iii)  In more general case than Fig. 7.1 (B) the region S needs an extra mesh in the 

region L beyond the line b-b'. Otherwise, when the direction of the x-axis is taken 

inversely to the case in Fig. 7.1(B) values of discharge on the right boundary in the 

region S can not be calculated, because the point of computation for discharge is 

located on the left side of the computation mesh. 

 

In conclusion, the computation procedure for the continuation of region is summarized and shown as 

follows for a one-dimensional case. 

 

7.2 - (A) 



 

 

 

Figures. 7.2 (A), (B) and (C) : the computation procedure for the continuation of region is summarized as 

shown for a one-dimensional case. 

 

(b) Continuation of Region in the x,y-t Space 

 

Discussion in the preceding section gives the way of selection of values when a difference equation is 

solved across the boundary between two regions of different grid length.  

   (i)  The water level in the region S in the neighborhood of the line b-b' is used in the computation in the 

region L. 

   (ii) The discharge in the region L in the neighborhood of the line b-b' is used in the computation in the 

region S. 

 

The method is explained for a two-dimensional case, on referring Fig. 7.3 where circles are computation 

points for water level and arrows are those for discharge. 

    

As for the water level, two methods are possible. Since k is taken equal to 3, when the region L is extended 

by an extra cell into the region S, this extra mesh is composed of 9 small cells of the region S. The central 

7.2 - (C) 

7.2 - (B) 



point (marked by double circles in Fig.7.3) of the 9 cells is located at the central point of the extra cell.  

 

Figure 7.3 Continuation between two regions S and L in the (x, y-t) space, where k = 3 and Δt = const. 

 

Therefore, we set 

 

      ZL(1, JE)   =   ZS(I'+2, 3) 

 

or, taking the mean value averaged over 9 cells, we have 
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As for the discharge, different from the water level, either interpolation or extrapolation is inevitable. Along 

the boundary between the regions L and S, discharges are connected as follows. 

i) At points from I'+2 to I'+8 along the boundary in Fig.7.3, discharges are calculated by an 

interpolation as Eq. for MS    
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ii) At other points than stated above, an interpolation is used if the region L still exists. For example, the 

discharge at the point I'+10 on the boundary in Fig.7.3 is given by, Eq. for M(I'+10, 1)   
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If the region L does not exist as the point I' in Fig.7.3, an extrapolation is used. Then we have, 

Eq. for M(I', 1)    
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(2) Continuation of Regions of Different Δt 

 

Assume that the time grid changes from 3Δt to Δt. Figure 7-4 shows the computation procedure in the x - t 

plane.  

 

Figure 7.4 Computation continuation between two regions S and L in the x-t plane when Δt varies at the 

ration of 1:3. 

 

As for the water level, values in the region S are used in the computation in the region L. This means that 

values are connected at the time shown by an arrow in Fig.7.4; i.e., at the middle of 3 cells in the region S. 

 

As for the discharge, values in the region L are used in the computation in the region S. Therefore, at each 

time step in the region S (at K, K+1, K+2, and so on), values of discharge such as M1 and M2 should be 

given. Let ML at time K and ML' at time K-3 be known.  Then, M1 is calculated by an extrapolation.  Even 

though the same extrapolation is applied to M2, an interpolation is preferable for M2 in order to reduce 

numerical error.  For this interpolation, value of ML'' should be known beforehand at time K+2. Fig. 7.5 

shows the way of computation in detail. 

 

A comment is added here that the position of time-region continuation is not necessarily the same as the 

position of space-region continuation. 



 

Figure 7.5 (a) Details of computation continuation in the x-t plane, when Δt varies at the ratio of 1:3. 

Computation of the water level Z in the regions S and L, with the equation of continuity. 

 
Figure 7.5(b) Computation of the water discharge M in the region S, with the equation of motion. An 

extrapolation in the region L to determine value of M at the boundary. Connection of the water discharge 

from the region L to the region S. 

 

Figure 7.5(c) Computation of the water level Z in the region S, with the equation of continuity. Connection 

of the water level from the region S to the region L.  



 

Figure 7.5 (d) Computation of the water discharge M in the region S and L, with the equation of motion. An 

interpolation in the region L to determine values of M at the boundary. Connection of the water discharge 

from the region L to the region S. 

 

Figure 7.5 (e) Computation of the water level Z in the region S, with the equation of continuity. 

 

Figure 7.6 (f) Computation of the water discharge M in the region S, with the equation of motion 

 

 

 



8. PROCESSING BATHYMETRIC DATA 

 

TUNAMI N2 program uses the bathymetry of the area as input data. The bathymetry of the area is usually 

stored as data files. This file consists of three values; x coordinate, y coordinate and the depth values. 

However data files are typically randomly spaced files, and this data must be converted into an evenly 

spaced grid before using as input file of the program. To convert into a grid file, a program called Surfer is 

used.  

 

Surfer is a contouring and 3D surface mapping program that runs under Microsoft Windows. It quickly and 

easily converts your data into outstanding contour, surface, wireframe, vector, image, shaded relief, and 

post maps. Further information can be found at the website of Golden Software; www.goldensoftware.com .  

 

Below is the procedure for converting the bathymetry data file to grid file by SURFER. 

1.  Start Surfer. 

2.  Click on the Grid | Data command to display the Open dialog.   

3.  Specify the name of the XYZ data file which is the bathymetry data of the area, and then click OK.   

4.  In the Grid Data dialog, specify the parameters for the type of grid file you want to produce.   

 



The Grid Data Dialog 

When creating a grid file you can usually accept all of the default gridding parameters  

Data Columns 

Individually specify the columns for the X data, the Y data, and the Z data. Surfer defaults to X: Column A, 

Y: Column B, and Z: Column C, which represents the x coordinate, y coordinate and the depth respectively.  

Gridding Method 

The gridding method should be set to Kriging which is the recommended gridding method with the default 

linear variogram. This is actually the selected default gridding method because it gives good results for 

most XYZ data sets.  

Output Grid File 

Choose a path and file name for the grid in the Output Grid File group by clicking the button (shown by 

an arrow).   Save Grid As dialog will be opened. You can type a path and file name or browse to a new 

path and enter a file name in the box. TUNAMI N2 requires a specific file format for the output grid file which 

is ASCII grid file format. To change the file format, use the drop down Save as type menu and choose GS 

ASCII (*.grd) format as shown below. Then click Save and return to Grid Data menu.   

 



ASCII Grid File Format 

ASCII grid files [.GRD] contain five header lines that provide information about the size and limits of the grid, 

followed by a list of Z values. The fields within ASCII grid files must be space delimited. 

The listing of Z values follows the header information in the file. The Z values are stored in row-major order 

starting with the minimum Y coordinate. The first Z value in the grid file corresponds to the lower left corner 

of the map. This can also be thought of as the southwest corner of the map, or, more specifically, the grid 

node of minimum X and minimum Y. The second Z value is the next adjacent grid node in the same row 

(the same Y coordinate but the next higher X coordinate). When the maximum X value is reached in the row, 

the list of Z values continues with the next higher row, until all the rows of Z values have been included.  

The general format of an ASCII grid file is: 

id The identification string DSAA that identifies the file as an ASCII grid file. 

nx ny nx is the integer number of grid lines along the X axis (columns) 

 ny is the integer number of grid lines along the Y axis (rows) 

xlo xhi xlo is the minimum X value of the grid 

 xhi is the maximum X value of the grid 

ylo yhi ylo is the minimum Y value of the grid 

 yhi is the maximum Y value of the grid 

zlo zhi  zlo is the minimum Z value of the grid 

 zhi is the maximum Z value of the grid 

grid row 1 

grid row 2 

grid row 3 

……….. 

 

These are the rows of Z values of the grid, organized in row order. Each row has a constant 

Y coordinate. Grid row 1 corresponds to ylo and the last grid row corresponds to yhi(i.e. the 

first row in the grid file is the last row on the map). Within each row, the Z values are 

arranged from xlo to xhi. 

 



The following example grid file is ten rows high by ten columns wide. The first five lines of the file contain 

header information. X ranges from 0 to 9, Y ranges from 0 to 7, and Z ranges from 25 to 97.19. The first Z 

value shown corresponds to the lower left corner of the map and the following values correspond to the 

increasing X positions along the bottom row of the grid file. This file has a total of 100 Z values.  

DSAA  

10 10  

0.0 9.0  

0.0 7.0  

25.00 97.19  

91.03 77.21 60.55 46.67 52.73 64.05 41.19 54.99 44.30 25.00 

96.04 81.10 62.38 48.74 57.50 63.27 48.67 60.81 51.78 33.63 

92.10 85.05 65.09 53.01 64.44 65.64 52.53 66.54 59.29 41.33 

94.04 85.63 65.56 55.32 73.18 70.88 55.35 76.27 67.20 45.78 

97.19 82.00 64.21 61.97 82.99 80.34 58.55 86.28 75.02 48.75 

91.36 78.73 64.05 65.60 82.58 81.37 61.16 89.09 81.36 54.87 

86.31 77.58 67.71 68.50 73.37 74.84 65.35 95.55 85.92 55.76 

80.88 75.56 74.35 72.47 66.93 75.49 86.39 92.10 84.41 55.00 

74.77 66.02 70.29 75.16 60.56 65.56 85.07 89.81 74.53 51.69 

70.00 54.19 62.27 74.51 55.95 55.42 71.21 74.63 63.14 44.99 

Grid Line Geometry 

Grid line geometry defines the grid limits and grid density. Grid limits are the minimum and maximum X and 

Y coordinates for the grid. Grid density is usually defined by the number of columns and rows in the grid. 

The # of Lines in the X Direction is the number of grid columns, and the # of Lines in the Y Direction is the 

number of grid rows. By defining the grid limits and the number of rows and columns, the Spacing values 

are automatically determined as the distance in data units between adjacent rows and adjacent columns.  

5.  Click OK and the grid file is created. During gridding, the status bar at the bottom of the Surfer window 

provides you with information about the progress of the gridding process.  

 

 

 



9. SOFTWARE FAULTWAVE.F 

 

TUNAMI does not use the fault data as it is. There is another software called FAULTWAVE.f which runs the 

fault data and produces the initial wave by the fault. TUNAMI uses this initial wave data to start with the 

modeling.  

 

9.1. Input Files and Parameters 

 

The software requires the bathymetry of the area as well as the fault data as the input. The data concerning 

the fault consists of the following parameters. The coordinates of the starting point and the end point of the 

fault, the width of the fault in meters, the dip direction, dip angle, slip angle in degrees, the dislocation and 

the depth in meters. This information will be stored in a txt file as shown below. Then the file will be saved 

as *.inp. 

 

 

Parameters of the program is listed below (which are also the input values in the *.inp file) 

RR : radius of earth 

L : fault length (m) 

W : fault width (m) 



TH : dip direction (degrees) 

DL : dip angle (degrees) 

RD : slip angle (degrees) 

D : dislocation 

HH : depth (m) 

Other than the input file, the dimensional parameters in the FORTRAN code are needed to be modified 

according to the number of grids of the bathymetry file.  

 

9.2. Output files 

 

The output file of the program is the initial wave in the sea which contains the water surface elevations at 

each grid point of the bathymetry data. This output file which is usually named as fault***.grd is also one of 

the input files of the TUNAMI program. 

 

10. GAUGES FILE CONCEPT 

 

The gauge location data is saved as *.dat file and contains the names, x and y coordinates of the gauge 

locations within the area. Names of the locations will be written within quotation marks. Next, the x 

coordinate and the y coordinate of the location will be written in decimals. South and west coordinates will 

be shown with a minus sign. 

 
 



11. SOFTWARE TUNAMI N2 

 

TUNAMI-N2 is a tsunami numerical simulation program with the linear theory in deep sez and with the 

shallow water theory in shallow sea and on land with constant grid length in the whole region. The run up 

can be computed with this program. 

 

The basic procedure of the program can be seen from the flowchart given below. The detailed information 

of some parts is either given in previous chapters or will be given in following chapters. 

  

 Dimension parameters 

 

 Spatial grid size and time step 

 

 Gauge.dat (Coordinates of the gauges) 

 

 

 Output file of faultwave.f (fault*.grd) 

 

 Time interval for output 

 Total time of simulation 

 

bathymetry.grd file in ASCII format  

 

NLMASS subroutine 

 

NLMMT subroutine 

 

 

 

 

  

 

Input: IF, JF 

Input: dx, dt 

Input: gauges file 

Input: fault data (initial wave) 

Input: outsec, tend 

Input: bathymetry file 

Conservation of mass 

Conservation of momentum 

Check of area for computation 

Time > Total time 

OUTPUT 

YES 

NO

O 

POINT, OUT1, RUNUP, OUT66  subroutines 



11.1 Input files and variables 

 

Dimension parameters are denoted as IF and JF. The values of the dimension parameters depend on the 

bathymetry grid file. IF is the number of rows and JF is the number of columns of the grid file. 

 

Spatial grid size which is denoted as dx is the distance between two grids of the bathymetry file. During 

processing of the bathymetric data, the grid interval size is determined by the user. 

 

Outsec is the time interval to output the sea state (the wave profile). This sea state is stored to t****.grd file 

tend is the total simulation time of the numerical analysis in minutes. 

 

Gauges file, initial wave parameters and the bathymetry file are explained in detail in previous chapters. 

 

11.2 Parameters 

 

Z : wave surface level 

M, N : water discharge 

HM, HN : still water depth at point of water discharge 

DM, DN : total water depth at point of water discharge 

HZ : still water depth 

ZD : total water depth 

IF, JF : dimensional parameters 

DX, DT : spatial grid and time step size 

G : gravitational acceleration 

KL : total time step 

IR : map of wave-braker 

BT :height of wave braker 

IP, JP : position of output point 

rip, rjp : coordinates of the output point in the map in cm.  

ZM : maximum water level 

xleft, xright, yleft, yright : limits of input file in degrees 

tplate* : time where the fault* is broken in seconds. There is only one fault broken at initial time t = 0 sec. 

tplate2, tplate3 and tplate4 are given so that they do not break during simulation. 



zmxsec : time when maximum elevations in the sea occurred  

rupmin : time in minutes. At every rupmin, program calculates maximum water surface elevations near 

shoreline. It is written to files *.dat. 

 

11.3 Subroutines 

 

There are several subroutines of TUNAMI-N2 having different purposes. The list of the subroutines as well 

as the codes of the main ones is presented below.  

READ – reads the depth data 

INTL – the initial condition as input 

HMN – calculates the water depth at point of discharge 

NLMASS – conservation of mass 

NLMMT – conservation of momentum 

CHANGE – exchanges the last step data to next step data 

OUT3 – output of data in a given format 

OUT1 – output of water level and discharge 

OUT6 – output of computed results on the display 

mxMAX – checks the maximum value 

POINT and POINTc – output of water level time histories 

RUNUP – output of run up values 

 

List of program Codes (Linearized model) 

 

(a) Mass conservation equation (for linear) 

 

 SUBROUTINE  MASS (IF,JF,Z,M,N,H,R) 

C 

C   Z; water surface level,      M,N; water discharge 

C   H; still water depth               R; ration of Dt to Dx 

C   IF,JF: dimension 

 REAL M,N 

  DIMENSION Z(IF,JF,2),M(IF,JF,2),N(IF,JF,2),H(IF,JF) 

  DATA GX/1.0E-10/ 



  DO 10 J=2,JF 

    DO 10 I=2,IF 

    IF(H(I,J).LT.0.0)GO TO 10 

    ZZ=Z(I,J,1)-R*(M(I,J,1)-M(I-1,J,1)+N(I,J,1)-N(I,J-1,1)) 

    IF(ABS(ZZ).LT.GX)ZZ=0.0 

    Z(I,J,2)=ZZ 

   10  CONTINUE 

   RETURN 

   END 

 

(b) Linearized momentum equation with bottom friction 

 

      SUBROUTINE MOMENT(IF,JF,Z,M,N,H,R,G) 

C     G; gravitational acces.   FM; Manning's roughness 

C 

REAL M,N 

 DIMENSION Z(IF,JF,2),M(IF,JF,2),N(IF,JF,2),H(IF,JF) 

 DATA GX/1.0E-10/ 

  FN=0.5*DT*G*FM**2 

 DO 10 J=1,JF 

 DO 10 I=1,IF 

C       cal. of  Linear term (x-direction) 

  IF(I.EQ.IF)GOTO 20 

  IF(H(I,J).LT.0.0)GO TO 10 

  IF(H(I+1,J).LT.0.0)GO TO 20 

 IF(J.EQ.1)THEN 

 XNN=0.5*(N(I,J,1)+N(I+1,J,1)) 

 ELSE 

 XNN=0.25*(N(I,J,1)+N(I+1,J,1)+N(I,J-1,1)+N(I+1,J-1,1)) 

 ENDIF 

 HM=0.5*(H(I,J)+H(I+1,J)) 

 FF=FN*SQRT(M(I,J,1)**2+XNN**2)/HM**(7/3.0) 

  XM=(1-FF)*M(I,J,1)-G*R*HM*(Z(I+1,J,2)-Z(I,J,2)) 



  IF(ABS(XM).LT.GX)XM=0.0 

  M(I,J,2)=XM 

   20    IF(J.EQ.JF)GOTO 10 

C       cal. of  Linear term (y-direction) 

  IF(H(I,J+1).LT.0.0)GO TO 10 

 IF(I.EQ.1)THEN 

 XMM=0.5*(M(I,J,1)+M(I,J+1,1)) 

 ELSE 

 XMM=0.25*(M(I,J,1)+M(I,J+1,1)+N(I-1,J,1)+N(I-1,J+1,1)) 

 ENDIF 

  HN=0.5*(H(I,J)+H(I,J+1)) 

 FF=FN*SQRT(N(I,J,1)**2+XMM**2)/HN**(7/3.0) 

 XN=(1-FF)*N(I,J,1)-G*R*HN*(Z(I,J+1,2)-Z(I,J,2)) 

 IF(ABS(XN).LT.GX)XN=0.0 

  N(I,J,2)=XN 

   10   CONTINUE 

 RETURN 

 END 

 

(c) Mass conservation equation (for nonlinear) 

 

         SUBROUTINE NLMASS(IF,JF,Z,M,N,DZ,HZ,R) 

C          DZ; total depth 

 REAL M,N 

          DIMENSION Z(IF,JF,2),M(IF,JF,2),N(IF,JF,2) 

          DIMENSION DZ(IF,JF,2),HZ(IF,JF) 

          DATA GX,GY/1.0E-5,1.0E-10/ 

          DO 10 J=2,JF 

          DO 10 I=2,IF 

          IF(HZ(I,J).LT.-9.9)GOTO 11 

          ZZZ=Z(I,J,1)-R*(M(I,J,1)-M(I-1,J,1)+N(I,J,1)-N(I,J-1,1)) 

          IF(ABS(ZZZ).LT.GY)ZZZ=0.0 

          DD=ZZZ+HZ(I,J) 



          IF(DD.LT.GX)GOTO 11 

          DZ(I,J,2)=DD 

          Z(I,J,2)=ZZZ 

          GOTO 10 

   11   DD=0.0 

          DZ(I,J,2)=DD 

          Z(I,J,2)=DD-HZ(I,J) 

   10 CONTINUE 

      RETURN 

      END 

 

(d) Nonlinear momentum equation with bottom friction 

 

    SUBROUTINE NLMMT(IF,JF,Z,M,N,DZ,HZ,HM,HN,R,DT,FM) 

C       G; gravitational acces.   FM; Manning's roughness 

      REAL M,N 

      DIMENSION Z(IF,JF,2),M(IF,JF,2),N(IF,JF,2) 

      DIMENSION HZ(IF,JF),HM(IF,JF),HN(IF,JF) 

      PARAMETER (NET=3) 

      DATA GG,GX/9.8,1.0E-5/ 

C     ------ CAL. OF TOTAL DEPTH AT POINT OF DISCHARGE ------- 

      DO 10 I=1,IF 

        DO 10 J=1,JF 

          IF(I.LT.IF)THEN 

          DM2=0.5*(DZ(I,J,2)+DZ(I+1,J,2)) 

          DM1=0.25*(DZ(I,J,2)+DZ(I,J,1)+DZ(I+1,J,2)+DZ(I+1,J,1)) 

          ENDIF 

          IF(J.LT.JF)THEN 

          DN2=0.5*(DZ(I,J,2)+DZ(I,J+1,2)) 

          DN1=0.25*(DZ(I,J,2)+DZ(I,J,1)+DZ(I,J+1,2)+DZ(I,J+1,1)) 

          ENDIF 

          IF(DM1.LT.GX)DM1=0.0 

          IF(DM2.LT.GX)DM2=0.0 



          IF(DN1.LT.GX)DN1=0.0 

          IF(DN2.LT.GX)DN2=0.0 

          DM(I,J,1)=DM1 

          DM(I,J,2)=DM2 

          DN(I,J,1)=DN1 

          DN(I,J,2)=DN2 

   10 CONTINUE 

C   ------- CAL. OF LINEAR TERMS (X-DIRECTION) ------- 

      FN=0.5*DT*GG*FM**2 

      DO 200 I=1,IF 

        DO 200 J=1,JF 

          DF=DM(I,J,2) 

          IF(J.EQ.1)THEN 

          XNN=0.5*(N(I,J,1)+N(I+1,J,1)) 

          ELSE 

          XNN=0.25*(N(I,J,1)+N(I+1,J,1)+N(I,J-1,1)+N(I+1,J-1,1)) 

          ENDIF 

          IF(DF.LT.1.0E-2)DF=1.0E-2      ----- minimum depth 

          FF=FN*SQRT(M(I,J,1)**2+XNN**2)/DF**(7.0/3.0) 

          IF(DD.LT.GX)GO TO 30 

          XM=(1.0-FF)*M(I,J,1)-GG*R*DD*(Z(I+1,J,2)-Z(I,J,2)) 

C  ----- CAL. OF NON-LINEAR TERMS (CONVECTION TERMS) ------ 

         IF(DM(I,J,1).LT.GX)GO TO 40 

          IF(M(I,J,1))41,41,42 

  41     IF(DM(I+1,J,1).LT.GX)GO TO 1001 

          IF(DZ(I+2,J,2).LT.GX)GO TO 1001 

          IF(DZ(I+1,J,2).LT.GX)GO TO 1001 

          XM=XM-R*(M(I+1,J,1)**2/DM(I+1,J,1)-M(I,J,1)**2/DM(I,J,1)) 

          GO TO 43 

 1001     XM=XM-R*(-M(I,J,1)**2/DM(I,J,1)) 

          GO TO 43 

   42     IF(DM(I-1,J,1).LT.GX)GO TO 1002 

          IF(DZ(I-1,J,2).LT.GX)GO TO 1002 



          IF(DZ(I,J,2).LT.GX)GO TO 1002 

          XM=XM-R*(M(I,J,1)**2/DM(I,J,1)-M(I-1,J,1)**2/DM(I-1,J,1)) 

          GO TO 43 

 1002     XM=XM-R*(M(I,J,1)**2/DM(I,J,1)) 

   43     IF(XNN)44,44,45 

   44     XNE=0.25*(N(I,J+1,1)+N(I+1,J+1,1)+N(I,J,1)+N(I+1,J,1)) 

          IF(DM(I,J+1,1).LT.GX)GO TO 1003 

          IF(DZ(I,J+1,2).LT.GX)GO TO 1003 

          IF(DZ(I,J+2,2).LT.GX)GO TO 40 

          IF(DZ(I+1,J+1,2).LT.GX)GO TO 40 

          IF(DZ(I+1,J+2,2).LT.GX)GO TO 40 

          XM=XM-R*(M(I,J+1,1)*XNE/DM(I,J+1,1)-M(I,J,1)*XNN/DM(I,J,1)) 

          GO TO 40 

 1003     XM=XM-R*(-M(I,J,1)*XNN/DM(I,J,1)) 

          GO TO 40 

   45     XNE=0.25*(N(I,J-1,1)+N(I+1,J-1,1)+N(I,J-2,1)+N(I+1,J-2,1)) 

          IF(DM(I,J-1,1).LT.GX)GO TO 1004 

          IF(DZ(I,J-2,2).LT.GX)GO TO 1004 

          IF(DZ(I,J-1,2).LT.GX)GO TO 40 

          IF(DZ(I+1,J-1,2).LT.GX)GO TO 40 

          IF(DZ(I+1,J-2,2).LT.GX)GO TO 40 

          XM=XM-R*(M(I,J,1)*XNN/DM(I,J,1)-M(I,J-1,1)*XNE/DM(I,J-1,1)) 

          GO TO 40 

 1004     XM=XM-R*(M(I,J,1)*XNN/DM(I,J,1)) 

   40     XM=XM/(1.0+FF) 

          IF(ABS(XM).LT.1.0E-10)XM=0.0 

          M(I,J,2)=XM 

          GO TO 100 

   30     M(I,J,2)=0.0 

  100     CONTINUE 

C   ------- CAL. OF LINEAR TERMS (Y-DIRECTION) ------- 

          IF(J.EQ.JF)GO TO 130 

         DF=DN(I,J,2) 



           IF(I.EQ.1)THEN 

          XMM=0.5*(M(I,J,1)+M(I,J+1,1)) 

          ELSE 

          XMM=0.25*(M(I,J,1)+M(I,J+1,1)+M(I-1,J,1)+M(I-1,J+1,1)) 

          ENDIF 

          IF(DF.LT.1.0E-2)DF=1.0E-2 

          FF=FN*SQRT(N(I,J,1)**2+XMM**2)/DF**(7.0/3.0) 

          IF(DD.LT.GX)GO TO 130 

          XN=(1.0-FF)*N(I,J,1)-GG*R*DD*(Z(I,J+1,2)-Z(I,J,2)) 

C  ----- CAL. OF NON-LINEAR TERMS (CONVECTION TERMS) ------ 

          IF(DN(I,J,1).LT.GX)GO TO 140 

          IF(N(I,J,1))141,141,142 

  141     IF(DN(I,J+1,1).LT.GX)GO TO 1011 

          IF(DZ(I,J+2,2).LT.GX)GO TO 1011 

          IF(DZ(I,J+1,2).LT.GX)GO TO 1011 

          XN=XN-R*(N(I,J+1,1)**2/DN(I,J+1,1)-N(I,J,1)**2/DN(I,J,1)) 

          GO TO 143 

 1011     XN=XN-R*(-N(I,J,1)**2/DN(I,J,1)) 

          GO TO 143 

  142     IF(DN(I,J-1,1).LT.GX)GO TO 1012 

          IF(DZ(I,J-1,2).LT.GX)GO TO 1012 

          IF(DZ(I,J,2).LT.GX)GO TO 1012 

          XN=XN-R*(N(I,J,1)**2/DN(I,J,1)-N(I,J-1,1)**2/DN(I,J-1,1)) 

          GO TO 143 

 1012     XN=XN-R*(N(I,J,1)**2/DN(I,J,1)) 

  143     IF(XMM)144,144,145 

  144     XME=0.25*(M(I+1,J,1)+M(I+1,J+1,1)+M(I,J,1)+M(I,J+1,1)) 

          IF(DN(I+1,J,1).LT.GX)GO TO 1013 

          IF(DZ(I+1,J,2).LT.GX)GO TO 1013 

          IF(DZ(I+2,J,2).LT.GX)GO TO 140 

          IF(DZ(I+1,J+1,2).LT.GX)GO TO 140 

          IF(DZ(I+2,J+1,2).LT.GX)GO TO 140 

          XN=XN-R*(N(I+1,J,1)*XME/DN(I+1,J,1)-N(I,J,1)*XMM/DN(I,J,1)) 



          GO TO 140 

 1013     XN=XN-R*(-N(I,J,1)*XMM/DN(I,J,1)) 

          GO TO 140 

  145     XME=0.25*(M(I-1,J,1)+M(I-1,J+1,1)+M(I-2,J,1)+M(I-2,J+1,1)) 

          IF(DN(I-1,J,1).LT.GX)GO TO 1014 

          IF(DZ(I-2,J,2).LT.GX)GO TO 1014 

          IF(DZ(I-2,J+1,2).LT.GX)GO TO 140 

          IF(DZ(I-1,J,2).LT.GX)GO TO 140 

          IF(DZ(I-1,J+1,2).LT.GX)GO TO 140 

          XN=XN-R*(N(I,J,1)*XMM/DN(I,J,1)-N(I-1,J,1)*XME/DN(I-1,J,1)) 

          GO TO 140 

 1014     XN=XN-R*(N(I,J,1)*XMM/DN(I,J,1)) 

  140     XN=XN/(1.0+FF) 

          IF(ABS(XN).LT.1.0E-10)XN=0.0 

          N(I,J,2)=XN 

          GO TO 200 

  130     N(I,J,2)=0.0 

  200 CONTINUE 

      RETURN 

      END 

 

(e)  Run up along a coastline 

     

     SUBROUTINE RUNUP(IF,JF,ZM,RUI,RUJ,DX,HZ,TM,III,JJJ, 

     *XL,XR,YB,YT,XINC,YINC,NR1,NR2,NR3,NR4,NR5,NR6,NR7,NR8,NR9, 

     *NR10,NR11,NR12) 

 

 DIMENSION ZM(IF,JF),RUI(IF,5),RUJ(JF,5),HZ(IF,JF),TM(IF,JF) 

      DIMENSION III(IF,2),JJJ(JF,2) 

      DY=DX 

  WRITE(*,2205)      

  WRITE(NR1,2205) 

 



 NNN=-1  

C     X=98.962   X=102.882 

      JSTART=(9.099-YB)/YINC   

 JEND=(1.612-YB)/YINC     

      ISTART=(98.962-XL)/XINC+1 

 DO 399 J=JSTART,JEND,-1 

C WRITE(*,*)J 

 NNN=NNN+1 

 RUJ(J,1)=YB+(J-1)*YINC 

      RMAX=-10000 

      YJ=(J-1)*YINC+YB 

 

          ISTART=ISTART+1  

C WRITE(*,*) ISTART  

C      IF(YJ.LE.3)ISTART=+(96.7-XL)/XINC+1 

C  SAYI=(J-1)*YINC+YB 

C IF(SAYI.LT.40.6)ISTART=(29.15-XL)/XINC+1 

C       WRITE(*,*)J 

      DO 3991 I=ISTART,ISTART-100,-1 

C      WRITE(*,*)'ISTART',ISTART,I, HZ(I,J),ZM(I,J) 

C      WRITE(*,*)I,J,HZ(I,J) 

 

C      IF(J.LE.60.AND.I.GT.(IF-10))GO TO 4399 

C      IF(J.LE.60.AND.I.LT.(IF-10))GO TO 1399 

C      WRITE(*,*)I,J 

      IF (HZ(I,J).GT.300.)GO TO 1399 

C      WRITE(*,*)I,J 

      IF(ZM(I,J).LT.RMAX) GO TO 3991 

C IF(SAYI.LE.40.7838.AND.SAYI.GE.40.7056.AND.HZ(I,J).GT.10.) 

C    *GO TO 1399 

 

      RUJ(J,2)=ZM(I,J) 

      RUJ(J,3)=TM(I,J) 



      RUJ(J,5)=YB+(J-1)*YINC 

      RUJ(J,4)=XL+(I-1)*XINC 

      JJJ(J,1)=I 

      JJJ(J,2)=J 

      RMAX=ZM(I,J)  

C     WRITE(*,*)I,J,ZM(I,J),JJJ(I,1),JJJ(I,2) 

C     WRITE(*,*)RUJ(I,1),RUJ(I,2),RUJ(I,3),RUJ(I,4),RUJ(I,5), 

C     *HZ(JJJ(I,1),JJJ(I,2)) 

3991  CONTINUE 

1399  CONTINUE 

C     WRITE(*,*)I,J 

C     WRITE(*,*)I,J,JJJ(J,1),JJJ(J,2),HZ(I,J),ZM(I,J),RMAX 

C     WRITE(*,202)RUJ(J,1),RUJ(J,2),RUJ(J,3),RUJ(J,4),RUJ(J,5) 

      WRITE(NR1,202)RUJ(J,1),RUJ(J,2),RUJ(J,3),RUJ(J,4),RUJ(J,5), 

     *HZ(JJJ(J,1),JJJ(J,2)) 

 399 CONTINUE 

     WRITE(*,*)'   RUNUP ALONG WEST COAST OF THAILAND IS OK' 

 

11.4 Output Files of TUNAMI-N2 

 

There are several output files which are mostly grid files showing sea state at different times and locations. 

These files are: 

 

t*****.grd files: these files show the sea state at a specified instant. Stars in the file name represents the 

time at which the sea state is stored. These files are generated according to the time interval given as 

outsec from the beginning of the simulation until the total simulation time, tend. 

 

elevsurface.dat:  shows the time histories of water surface elevations of the locations that are given in the  

gauges file. 

 

elevcurrent.dat:  shows the time histories of current velocities at the locations that are given in the  

gauges file. 

 



azmax.grd: shows the maximum water level at each grid during simulation at time = tend. Using this file and  

coordinates of the start and end points of a specified coastline, the runup subroutine as a separate program, 

calculates the runup levels and the results are stored in r-u-name.dat file.  

 

azmin.grd: shows the minimum water level at each grid during simulation at time = tend. 

 

Curmax.grd: shows the maximum current velocity at each grid during simulation at time = tend. 

 

azWH.grd: shows the wave height at each grid during simulation till time = tend.  

 

12. INTERPRETATION OF TUNAMI-N2 OUTPUT FILES 

 

The output of TUNAMI-N2 program is not easily interpreted as given in the output files. In order to get the 

best results, the output files are needed to be converted in to diagrams or graphs so that the interpretation 

and the comparison of different data can be achieved easily.  

 

Using t***.grd files and the bathymetry file of the area, the simulation of the tsunami is accomplished. 

Plotting the elevsurface.dat for specific coordinates where the tidal gauges are located, comparison of the 

real time data and the numerical analysis of the tsunami can be done which is a way of checking the 

accuracy of the simulation.  

 

Plotting the runup file enables another check of accuracy for the simulation and the input parameters by 

comparing the post tsunami survey measurements and the output of the runup routine.  

 

The diagrams or the graphs of the output files are mostly prepared by using the programs Surfer, Grapher 

and/or Microsoft Office Excel. To learn about these programs, please refer to the help menus of each 

software.   



13. SAMPLE AND REAL-TIME APPLICATIONS 

  

13.1 Pool Application 

A grid data is created as below in order to present some of the output files in simple form. 

0 50 100 150 200 250

0

50

100

 

Figure 13.1 The bathymetry of the sample application by Surfer 

 

 

 

Using the below parameters an initial wave is created for this sample.  

 

128.8     36.2358      Start point of the fault                                   

 73.73     97.4         End point of the fault 

  5000.00      Width.                                                         

    300.00      THETA.   

     20.00      DL   .                                                  

     45.00      RD   .                                                      

     20.00      D    .                                  

  10000.00      HH   .          



       

Figure 13.2 The initial wave created by using the above parameters using AVINAMI 

 

The propagation of the initial wave can be plotted by using the output files at any time interval. Some 

examples for this sample application are given below. 




