東北大学大学院	学生会員	〇久松明史
静岡県ふじのくに地球環境史ミュージアム	非会員	菅原大助
東北大学災害科学国際研究所	非会員	後藤和久
東北大学災害科学国際研究所	正会員	今村文彦

1. 序論

砂質の津波堆積物は,過去の地震や津波に関する 情報を与える様々な地質記録のなかでも識別や堆積 年代の推定が比較的容易なため,多くの研究報告が ある.しかし,砂質津波堆積物の分布データは,こ れまでの津波波源モデル推定において,最も内陸の 地点の位置情報しか用いられていない(例えば, Namegaya and Satake, 2013).より多くの情報を活用し て波源の推定精度を向上させる方法の一つとして, 土砂移動計算で求めた堆積物の層厚分布を実測デー タと比較して波源パラメータを推定する手法が考え られる.

本研究では、津波土砂移動の数値モデルが上記の 波源パラメータ推定手法に適用できるか否かを、 2011年東北地方太平洋沖地震津波の再現計算および 津波堆積物データを用いて評価した。

2. 計算方法と計算領域

仙台市沿岸部における,東北地方太平洋沖地震津 波による土砂移動の再現計算を行い,津波堆積物の 層厚を計算した.土砂移動計算モデルは今井ら (2015)が用いているものと同じモデルを用いた.堆 積物の層厚の実測データとして,Goto et al. (2012)の 46点 (図-1,測線A),Abe et al. (2012)の45点 (図-1, 測線B)および Sugawara et al., (2014)の77点 (図-1, 測線 EW)の合計 168 点を用いた.

土砂移動計算の結果は津波浸水計算の精度に依存 する.本研究では、東北地方太平洋沖地震による地 殻変動、津波観測波形と浸水高分布を精度良く再現 する津波波源モデルとして、杉野ら (2013) のパラメ ータを用いた.ただし、Sugawara et al. (2014) は杉野

図-1 数値計算の計算領域である仙台平野荒浜周辺に おける痕跡高データと堆積層厚データの位置.

ら (2014) のモデルが仙台平野の浸水高分布を約 25%過大に予測することを指摘している.本研究で も、すべり量を 0.8 倍して津波計算を行った.浸水高 の再現性評価では、東北地方太平洋沖地震津波合同 調査グループ (オンライン) によるデータのうち,信 頼度 A の 126 点 (図-1 中黄点) との比較を行った.

3. 計算結果

浸水高分布および堆積物の層厚分布の再現性の評価では、相田 (1977) の幾何平均 K と幾何標準偏差 κ を用いた (表-1). K で評価した全体的な浸水高はやや過小であるが、堆積物の層厚はよく再現されている.ただし、浸水高・層厚ともに、κ で評価されるばらつきが大きくなっている.

海岸線からの距離と計算および実測の層厚の関係 を図-2 に示す.海岸線から約 800 m 以内および約 2300 m よりも内陸側での計算値と実測値に差がある ことがわかる.

表-1 浸水高分布と堆積物の層厚分布の計算値の実測
値に関する相田 (1977)の幾何平均Kと幾何標準
偏差κ.

	データ数	1/K	κ
浸水高	106	0.97	1.97
堆積物の層厚	107	1.01	3.31

図-2 堆積物の層厚分布の計算値と実測値.

4. 議論

海岸線から約800 m以内の計算値と実測値は大き く異なる (図-2). この領域は砂浜や海岸林が広がっ ている.これらの場所では元々そこにあった砂と津 波によって運ばれた砂の区別が難しいため,実測値 が過小であった可能性が考えられる.

堆積物の層厚の計算値は内陸薄層化の傾向がみら れ,約2300mより内陸にはほとんど堆積していない (図-2).これは土砂移動計算では単一粒径の土砂を計 算しているためである.本研究では粒径0.267mmを 用いて計算した.現地調査によると,測線Aでは, 海岸線から1550mまでの平均粒径は0.287~0.330 mmで,2250m(平均粒径0.166mm)にかけて細粒化 する(Goto et al., 2012).また,測線Bでは2300mよ り内陸では主に泥質物が堆積していた(Abe et al., 2012).このことを考慮すると,計算結果は800~2300 mの実測値をよく再現している.また,砂質堆積物 の内陸分布限界もよく再現されている.

津波痕跡高を用いて津波波源のパラメータを推定 する試行錯誤法では,津波浸水計算と痕跡高を直接 比較する (相田, 1977). これに対し堆積物の層厚を 用いる方法は,津波浸水計算に加えて土砂移動計算 を行う.本研究の結果から,土砂移動モデルによっ て堆積物の層厚分布と浸水高分布を関係付けること が可能であることが示唆される.局所的には浸水高 分布から沖合の津波波高を制約することができると 考える.また,広域で堆積物が得られている場合, 堆積物の層厚から浸水高を制約し,波源モデルのパ ラメータを推定することが可能であると考える.

5. 結論

津波土砂移動の数値モデルが津波波源のパラメー タ推定手法に適用できるか否かを評価するために, 仙台市沿岸における2011年東北地方太平洋沖地震津 波による土砂移動の再現計算を行った.

計算の結果は全体的な堆積物の層厚と計算に用い た粒径の砂質堆積物の分布限界を良く再現した.堆 積物の層厚分布から浸水高分布を制約できるといえ る. 今後は,過去の津波に適用するために,堆積物 の層厚データ数による精度の変化や,浸水高分布か ら波源モデルを制約する方法の検討が必要である.

参考文献

- 相田, 1977, 三陸沖の古い津波のシミュレーション. 地 震研究所彙報, 52, pp. 71-101.
- 今井ら, 2015, 2011 年東北津波における北上川河口部の 大規模洗掘・堆積に関する数値的検討. 土木学会論 文集 B2 (海岸工学), 71, 2, pp. I_247-I_252.
- 東北地方太平洋沖地震津波合同調査グループ, http://www.coastal.jp/ttjt/
- 杉野ら, 2013, 原子力サイトにおける 2011 東北地震津 波の検証. 日本地震工学論文集, 13, 2, pp. 2-21.
- Abe et al., 2012, Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan. Sedimentary Geology, 282, pp. 142-150.
- Goto et al., 2012, Liquefaction as an important local source of the 2011 Tohoku-oki tsunami deposits at Sendai Plain, Japan. Geology, 40, pp. 887-890.
- Namegaya et al., 2013, Reexamination of the A.D. 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophysical Research Letters, 41, pp. 2297-2303.
- Sugawara et al., 2014, Sediment transport due to the 2011 Tohoku-oki tsunami at Sendai: Results from numerical modeling. Marine Geology, 358, pp. 18-37.