非線形分散長波理論を用いた 津波ソリトン分裂・河川遡上・マッハ反射シミュレーション

千田 健一*・岩間 俊二**・三上 勉*・舘澤 寛*・鈴木 介*

1. 目的

右写真は,2011.3.11 東日本大震災の際,名 取川河口にて撮影された映像である¹⁾。映像 は,第1波後半であり,浅水域で津波は変形 し短いソリトン波列に分裂している。この映 像からも,津波シミュレーションにおける非 線形分散性の検討が重要であることがわかる。

本研究の目的は,非線形分散長波理論²⁾ に基づく津波シミュレーションモデルを開発 し,その精度を検証するとともに,津波ソリ トン分裂・ソリトン波列の河川遡上・マッハ 反射を再現することを目的とする。

```
2. ソリトン分裂シミュレーション<sup>3)</sup>
```

(1) 検討方法

初めに1次元解析モデルを開発し,非線形 分散長波の解析解,実験・既往研究と比較し, その精度を検証した

(2) 支配方程式

非線形分散長波理論式には,既往研究から, その津波シミュレーションにおいて精度が実 証されている後藤・藤間・首藤の式⁴⁾を用いた。

式(1)が連続の式,(2)が運動の式である。 ここに、ηは、波高, *M*は、*x*方向の線流量、

*株式会社防災技術コンサルタント

**株式会社防災技術コンサルタント(岩手 大学大学院工学研究科社会人博士課程在学)

写真1 名取川河口(16:13)東北地整みちの く号から撮影

h, *D*, *g*は, 各々, 静水深, 全水深, 重力加 速度。なお, 本研究では摩擦・砕波によるエ ネルギー損失を無視した。

(3) 差分法

差分法は、津波シミュレーションの分野 で、最も信頼性の高い東北大モデルを参考に、 Staggered gridのLeap-frog法とした。数値粘 性の原因となる移流項は、3次精度のCIP法 で差分化し、誤差抑制を図った。分散項には 2次精度の中央差分を用いた。

(4)シミュレーション精度の検証

1) クノイド波の再現

クノイド波は、浅水領域における非線形性 と分散性を考慮した保存波である。クノイド 波を計算し、同モデルの精度を検証した。ク ノイド波は、波高 5.0 m、水深 10.0 m、波長約 100 m とし、藤間らの CADMAS-SURF で計算 し、同様の条件で、本モデルによりシミュレー ションを行った。空間格子間隔は 10m、時間 格子間隔 0.01 秒とした。造波境界から約 5 波 長はなれた位置である 500 m地点における CADMAS-SURF と本モデルのシミュレーショ ン結果を図1 に示す。結果はほぼ一致した。

図1 計算精度の確認(クノイド波の計算):造波境界から500 m地点

2) 既往研究との比較

津波ソリトン分裂の数値計算に関しては, 後藤,藤間,首藤⁴⁾および Madsen⁵⁾の研究 が著名である。同研究の数値計算水路形状は, 図2に示すように,水平床と1/20の一様勾 配を組み合わせたものである。入射波条件は, *x/h*₁=10に波峰を持つ波高水深比0.12の孤立 波である。ここに,xは水平方向距離,h 1 は孤立波の波高である。図3のA, B, C は、前記既往研究における *x*/*h*_i=14.65, 30.0, 41.6 地点の水位時系列である。図中〇印は Street et al. の水理実験結果である。本モデル の計算条件は、計算格子間 5m, 時間間隔 0.01 秒である。当モデルのシミュレーション結果 は、既往水理実験・シミュレーションとほぼ 一致した。

図2 本研究(上段)と既往研究(下段)の比較(1)

図3 本モデルの計算結果(上段)と既往研究(下段)の比較(2)

(1)検討方法

前記1次元モデルを拡張し、津波ソリトン分裂、ソリトン波列の河川遡上を再現し、 3D可視化する。 (2) 支配方程式および差分法

支配方程式および差分法は、1次元非線形 分散波方程式の解析法と全く同じであり、そ れを方向分離法により2次元化した。

(3)地形境界条件図4に示す。

(4) シミュレーション結果

計算結果の考察は、当社の保有する津波シ ミュレーション3次元アニメ技術(海底地形 透視;水位鳥瞰・色識別)を用いて行なった。 河口付近を遡上する津波の2次元計算結果を 図5に示す。入射波は1つの孤立波であったが、

計算開始2分

計算開始3分

0h 3m 0s

河口付近では3波以上に分裂している。河口 沖合 x = 660 付近で、勾配 1:20 で水深 10mから、5 mに浅くなったため、孤立波が分 裂したのである。そのソリトン波列が河口部 に到達すると、汀線では反射、次第に川幅が 狭まる河岸では、反射波による波高の増幅が 生じることが分かる。

計算開始1分30秒

計算開始2分45秒

図5 河口付近を遡上する津波(非線形分散長波)

Z(m)

2.0

1.0

0.0

4. マッハ反射シミュレーション

(1) 検討目的

右写真は,2013.3.11 東日本大震災において 津波が閉伊川を遡上する際,津波ソリトンの 河岸での増幅現象を捉えたものである。津波 は,写真の左(海側)から右(上流)に向け て遡上している。写真正面の右岸では,直立の 特殊堤位置において津波ソリトンの入射波・ 反射波が非線形的に反射・重合し,写真手前 の河川中央に比べ波高が非常に増大している。

河川を遡上した津波ソリトンが防波堤・堤 防等に斜めに入射した際に非線形分散性によ り波高を増す現象は、従来マッハ反射として 理論的・実験的研究されてきた。本章では、 本津波シミュレーションモデルを用い、マッ ハ反射を再現できるか検証する。

(2) マッハステムの発生条件⁷⁾⁸⁾⁹⁾

直壁に斜め入射するソリトンの反射に関し て Miles (1977a, b)が理論的研究を行っている。 平面波ソリトンの入射波入射角 ϕ_i (反 射波ソリトンの波峰が鉛直壁に下した垂線 となす角)および水深で正規化した振幅 α_i (今後単に振幅とよぶ)から計算される $\kappa = \frac{\phi_i}{\sqrt{3\alpha_i}}$ が比較的小さい,もしくは入射 ソリトン振幅が比較的大きい場合 (0 < κ < 1)には,反射形態は入射ソリトン・反射

写真2 閉伊川を遡上する津波ソリトンの河 岸での波高増大(3.11.2011 岩手県 宮古市)

FIGURE 4. The Mach-reflexion pattern of § 4. The angular scale is exaggerated.

図6 マッハステムの説明図

ソリトン・ステム波 (マッハステム) の3波 共鳴条件から求められたマッハ反射 (mach reflection) となる (Miles, 1977b)。

同研究を踏まえ、マッハステム発生条件を 表1のとおり設定した。

表1 マッハステムシミュレーションの境界条件

項目	諸元	備考
入射角(Φ i)	$0.35 rad (20^{\circ})$	
水深	5.0m	一定
ソリトン波高	1.1m	初期凍結ソリトン波高 2.2m
振幅 (αi)	0.22	αi=波高/水深= 1.1 / 5.0
κ	0.43	$\kappa = \Phi i / (\sqrt{3\alpha}i)$

(3) 支配方程式および差分法

支配方程式および差分法は,前記2次元非 線形分散波方程式の解析法と全く同じである。

(4)シミュレーション結果

図7にシミュレーション結果を示す。図中 C₁, C₂は,各々入射波,反射波である。C₃は, 河岸に垂直に伸びていることからマッハ反射 の理論的研究より予測されるマッハステムと 考えられる。以上より,当モデルはマッハ反 射を再現できることが検証された。

5. 謝辞

本研究に際し,首藤伸夫東北大学名誉教授, 今村文彦東北大学大学院教授,越村俊一東北 大学大学院教授より有益なアドバイスを賜り ました。記して謝意を表します。

6. 参考文献

- 真野明・田中仁・有働恵子:海岸堤防 の被災メカニズム:東日本大震災3ヵ月 後報告会:2011http://www.dcrc.tohoku.ac.jp/ surveys/20110311/docs/20110610_1-3_mano. pdf
- 2) 首藤伸夫 非線形波動論 1974 年度 水 工学に関する夏期研修会講義集 Bコース 非線形波動論 B-1-1 ~ B-1-35
- 一次元非線形分散波の方程式を用いた CIP 法による河川を遡上する津波の数値計 算
- 千田健一 平成20年度(2009) 土木学 会 東北支部研究発表会 II48 P189-19 (CD R)
- 4)後藤智明,首藤伸夫等 アーセル数が大 きい場合の非線形分散波の方程式 土木 学会論文集 第351号/II-2, PP193-210,

図7 津波ソリトンのマッハ反射シミュ レーション結果

198

- 5) Madsen, .S.and Mae, C.C.:Solitary wave over an uneven bottom, J.F.M., Vol.39, 196
- 6) 二次元非線形分散波の方程式を用いた CIP 法による河川を遡上する津波の数値計算
- 千田健一,鈴木介,岩間俊二,三上勉,舘澤
 寛 平成 20 年度(2009)土木学会 東北
 支部研究発表会 II49 P191-19(CD R)
- 7) 灘井章嗣 都司嘉宣 月刊海洋 平面波ソ リトンの斜め反射に伴うマッハステム現象
- 号外 No15 1998 P129-134
- 8) Miles, J.W : Obliquely interacting solitary waves, J.Fluid Mech., 79 157-169 (1977a)
- 9) Miles, J.W : Resonantly interacting solitary waves, J.Fluid Mech., 171–179 (1977b)