瀬戸内海の各地で測定した静振とそのスペクトル

阿 部 邦 昭*

1. はじめに

瀬戸内海は中国地方と四国の間で東西に延 びる内海であって, 東は紀伊水道, 南西は豊 後水道, 西は関門海峡を経て太平洋や日本海 とつながっている。したがってこれらの海峡 を通じて外海の影響が及んでいる海域である。 瀬戸内海に位置する湾や港は外海の影響を受 けながらも,特徴的地形に応じて固有の振動 をしていると考えられる。湾や港は津波や高 潮が発生した場合その固有周期が津波や高潮 の周期と一致して共鳴を起こすことも考えら れる。固有の振動や強制された振動が通常の 海面の振動(静振)にどのように表れている かは条件を同一にして各地で観測することで 知ることができる。このような観測は東海(阿 部, 2009), 北海道(阿部, 2010a), 九州(阿 部,2010b)などで行われているが瀬戸内海 では例がない。そこで瀬戸内海各地で日常の 海面振動を測定して,卓越する周期や振幅を 調べた。

2. 方法

水位の測定は可搬式の圧力センサーと記録 計を測定点に運び,圧力センサーを岸壁から つりさげ,岸壁上に記録計を置いて水位を圧 力によって測定するものである。測定結果は 測定終了後磁気カードに取り込み,パーソナ ルコンピュータに移してスペクトルを求める。 測定,解析法は筆者が従来各地で静振を測定 し,解析してきた方法と同じものである(た とえば,阿部,2010a)。測定におけるサンプ リング時間は1分で,サンプリングを継続す る時間は6時間である。

3. 測定結果

測定した場所は山口県徳山港,笠戸湾,広 島県広島港,松永湾,岡山県児島湾,兵庫県 相生湾,香川県志度湾,高松庵治町,多度津 港,愛媛県伊予港,三崎港,八幡浜港,玉津湾, 宇和島港の14点である。これを図示したの

図1 測定点の地理分布

^{*950-0964} 新潟市中央区網川原 2-28-41

が図1である。測定時期は,前者の6点では 2010年10月29日から11月1日の期間,後 者の8点では2012年7月12日から15日の 期間である。測定点の緯度経度,測定時間を 表1に示す。測定の1例として相生湾での測 定点と水位測定結果をそれぞれ図2,図3に 示す。図4には全点の測定水位パワースペク トルを示す。

表1 測定点の番号,名前,位置,測定日

No	name	name (J)		latitude	longitude	date
1	Tokuyama	徳山		34° 02′ 30″ N	131° 48′ 09″ E	10/10/30
2	Kasado	笠	戸	34:00:29N	131:51:21E	10/10/30
3	Hiroshima	広	島	34:21:54N	132:31:08E	10/10/29
4	Matsunaga	松	永	34:26:20N	133:15:20E	10/10/31
5	Kojima	児	島	34:35:53N	133:57:22E	10/10/31
6	Aioi	相	生	34:48:15N	134:27:46E	10/11/01
7	Shido	志	度	34:19:35N	134:10:01E	12/7/14
8	Ajichou	高松庵治町		34:21:38N	134:07:17E	12/7/14
9	Tadotsu	多	度 津	34:16:21N	133:44:41E	12/7/15
10	Іуо	伊	予	33:45:37N	132:41:59E	12/7/13
11	Misaki	Ē	崎	33:23:17N	132:07:14E	12/7/13
12	Yawatahama	八	幡 浜	33:27:17N	132:25:13E	12/7/13
13	Tamatsu	玉	津	33:18:40N	132:31:37E	12/7/12
14	Uwajima	宇	和島	33:13:38N	132:33:13E	12/7/12

図2 相生における水位測定点(黒丸)

図3 相生における測定結果

図4 測定された水位変化のパワースペクトル

4. 考察

図4に示したパワースペクトルでは測定点 が湾や入り江にある場合は全体的に長周期が 卓越して周期が短くなるにつれてパワーが減 る傾向を示す。これに対し,港が内海に直接 面している場合は周期20-100分の成分が少 なく10分近くの短周期が増加して卓越する 傾向を示す。後者には伊予港,多度津港の場 合が当てはまる。それ以外はすべて前者に分 類される。湾や入り江の構造に伴って現れる 卓越周期のピークは宇和島,相生で明瞭であ る。笠戸,広島の各湾がそれに次いで明瞭で ある。特に明瞭なピークが指摘できない例は 徳永湾,松永湾の場合である。両者に共通す ることは湾の入口が狭いのに内部は広く,袋 状の構造をしていることである。この場合は 固有振動の励起が弱い。

図5は図4のパワースペクトルの中で卓越 する周期を長い順に抽出して並べたものであ る(表2)。伊予港と多度津港はともに内海 に面する港構造の観測点であるが、伊予港は 長周期から短周期まで4個のピークが指摘で きるのに対し、多度津港は10.7分周期成分1 個が指摘されるだけである。湾や港構造に対 し、奥行きの長さ(表2)を定義してこれを

図5 スペクトル(図4)からもとめた主な卓越周期

No	name	nan	ne (J)	L (km)	T1 (min)	T2 (min)	T3 (min)	T4 (min)
1	Tokuyama	徳	Щ	8	64.1	29 .8		
2	Kasado	笠	戸	6	49.0	18.1	9.7	
3	Hiroshima	広	島	5	34.7	23.1	11.9	
4	Matsunaga	松	永	4	92.6	28.7		
5	Kojima	児	島	12	49.0	15.4		
6	Aioi	相	生	5	41.7	26.9	12.6	
7	Shido	志	度	4	20.8	12.6	7.6	
8	Ajichou	高松庵治町		4	52.1	26.0	8.5	
9	Tadotsu	多	度津	1	10.7			
10	Іуо	伊	予	0.7	55.6	24.5	14.6	11.1
11	Misaki	Ξ	崎	3	22.5	14.6		
12	Yawatahama	八	幡 浜	4	32.1	23.1	13.7	11.3
13	Tamatsu	玉	津	8	55.6	15.7	10.3	
14	Uwajima	宇	和島	4	16.0	11.0		

表2 測定点の番号,名前,長さ(L),卓越周期(T)

図6 各点における特徴的地形の長さ(km)と最長卓越周期(分)の関係

横軸に取り,観測された最長の周期を縦軸に とってプロットしたのが図6である。特徴的 なことは多くの点が比例を表す一直線に乗る ことである。これは特徴的な長さに対応した 固有振動が励起されて,特有の周期が卓越し たことを示すものである。水深hが同じだと すると卓越周期Tは長さL,重力加速度をg として

$T = \frac{4L}{\sqrt{gh}}$

で同じ直線に乗ることを示すことができる。 この直線に乗らない点は伊予港,松永湾,児 島湾である。伊予港は最長周期ではなく振幅 が2番目に大きい周期の11.1分をとると,他 と同じ比例で近似されるので,55.6分に代り, これが固有周期に当たると考えられる。松永 湾の場合は2番目に長い周期の28.7分が上 記の式に当たる周期である。このような考察 によってほとんど大部分の地点で固有の周期 が励起されていることを示すことができる。

最近, 岡田 (2013) は瀬戸内海の検潮所で 観測された津波についてまとめている。そこ で 2011 年東北地方太平洋沖地震津波が, 太 平洋から紀伊海峡, 豊後水道を通過して瀬戸 内海に伝わり, 大阪のような例外はあるが太 平洋から遠ざかるにつれて振幅が減少するこ とを示した。今回測定した津波という励起源 がないときの海面振動の瀬戸内海全域の振幅 分布をこれと比較してみると,伊予,相生で 大きく,多度津,児島湾で小さい傾向がみら れ,津波のように単純に太平洋からの距離に 応じて減少する傾向とは異なる。

5. まとめ

瀬戸内海の各地で通常時の海面振動を測定 して、そのスペクトルから卓越周期を抽出し た。その卓越周期が湾や港でその長さに対応 していることから、海面振動は固有振動が励 起されたものであることを示している。

参考文献

- 阿部邦昭,関東・東海沿岸で観測した静振の スペクトルと卓越周期,津波工学研究報告, 26, 17-26, 2009.
- 阿部邦昭,北海道沿岸で観測した静振のスペ クトルと卓越周期,津波工学研究報告,27, 43-50,2010a.
- 阿部邦昭,九州沿岸で観測した静振のスペク トルと卓越周期の意義,津波工学研究報告, 27,51-58,2010b.
- 岡田正実,瀬戸内海の災害一地震・津波,瀬 戸内海の気象と海象,海洋気象学会発行, 132-144, 2013.